THE SYNTHESIS AND SPECTROSCOPIC PROPERTIES OF SOME SUBSTITUTED AND BRIDGED BIPHENYLS

E. J. FORBES and C. J. GRAY

Department of Chemistry, The University, Birmingham 15, England (Received in the UK 3 October 1967; accepted for publication 12 October 1967)

Abstract—A series of tetramethoxybiphenyls and bridged tetramethoxybiphenyls have been prepared and their UV spectra investigated. The substituted biphenyls show short- and long-wavelength bands while the bridged biphenyls and the parent 3,3',4,4'-tetramethoxybiphenyl in addition show conjugation bands. The significance of these findings is discussed. The NMR spectra of the bridged biphenyls show that, with one exception, conformational inversion in this series is rapid at 35.

SUBSTITUTED biphenyls and bridged biphenyls have been the subject of extensive spectroscopic study.¹⁻¹¹ To a large extent this work relates to compounds unsubstituted except in the ortho positions. In connection with other work we had occasion to prepare a range of both types in which each benzene ring is substituted by two OMe groups. Previous work has shown that there is a correlation between the maximum of the conjugation band of the UV absorption and the angle θ between the planes of the benzene rings, i.e. as θ increases so the band shifts to shorter wavelength and decreases in intensity.^{2,3,11} UV spectroscopic measurements on the present series confirm this and show that where there is also present a long-wavelength band a similar relationship holds.

Preparation. The substituted tetramethoxybiphenyls (I-IV) were prepared as described by Cromartie et al.¹² The dinitrile (VI) was obtained from the diamide (III) by treatment with thionyl chloride, and the dialcohol (IV) was converted into the dichloride (V) with thionyl chloride and pyridine in benzene. Dieckmann cyclization of the diester (II) gave the β -ketoester (XII) which was hydrolysed and decarboxylated to the ketone (XIII) by treatment with boiling n-butanol-conc hydrochloric acid. From this ketone were prepared the oxime (XIV), the alcohol (XVI) and the Wolff-Kischner reduction product (XV). Beckmann rearrangement of the oxime proceeded only with difficulty, the best yields (10–14%) of the expected amide (XVIII) being obtained with phosphorus pentachloride in benzene. The major product of this reaction was the chloronitrile (VIII), resulting from ring cleavage due to attack by chloride ion on the highly-strained ring system (XIX).

UV spectra. Table 1 records the UV spectroscopic data for these compounds and for ethyl 3,4-dimethoxyphenylacetate (XX), together with the figures reported by Matarasso-Tchiroukhine¹³ for the related compounds (IX, X, XI and XVII). Data quoted by Beaven et al.^{4,5} and by Braude and Forbes⁶ show that the presence of two OMe groups per molecule in the biphenyl series causes an increase in intensity and a shift to longer wavelength of the long-wavelength band. In this series of compounds, the presence of four OMe groups per molecule further intensifies and shifts to the red the long-wavelength bands. These long-wavelength bands show clearly the relationship between λ_{max} , ε_{max} and the angle θ described by Beaven et al.³ and

Compound	Short-wave band À _{max} mµ	Conjugation band λ _{max} mμ	l Long-wave band λ _{max} mμ
I	233 (s) (4·25)*		287 (3.88)
11	234 (s) (4-24)		288 (3.91)
111	236 (s) (4·21)		287 (3-87)
v	232 (s) (4·29)		285 (3.90)
VI	235 (s) (4·22)		287 (3·89)
VII	229 (4-66)		282 (3.97)
VIII	235 (s) (4·28)		284 (3.89)
1X*			286 (4-10)
X•			290 (4-09)
XI•		273 (4-30)	291 (4-23)
XII	246 (4-38)	261 (4-27)	289 (4-20)
XIII	243 (s) (4·19)		288 (4-12)
XIV	241 (s) (4·20)	272 (4-17)	291 (4-14)
xv	not visible	265 (4-18)	292 (4-14)
XVI	239 (s) (4·16)	266 (4-18)	291 (4-13)
XVII*		274 (4-20)	297 (4-10)
XVIII	235 (s) (4·21)	261 (3 93)	282 (3 89)
xx	229 (3.84)	, ,	279 (3-49)

TABLE 1. UV SPECTRA OF SOME SUBSTITUTED AND BRIDGED BIPHENYLS IN ETHANOL

* Reported in Ref. 13, no short-wave band figures given. * (s) = shoulder. Figures in brackets refer to $\log_{10} e_{max}$.

1:	R	$= R^{"} = CH_1CO_2H$
- 11 :	R'	$= R'' = CH_2CO_2Me$
III ·	R	$= R'' = CH_1CONH_1$
IV :	R'	$= R'' = CH_2CH_2OH$
V :	R'	= R" = CH ₂ CH ₂ Cl
VI:	R'	$= R'' = CH_2CN$
VII:	R.	$= R'' = CH_2CH_2OCOPh$
VIII:	R	$= CH_2CI. R'' = CH_2CN$
IX :	R'	= R'' = Mc
X :	R	$= R'' = CH_2CI$
XI :	R.	= R" - H

XII:R	-	CO ₂ Me.	Y	= C ∹O
XIII: R	=	Н	Y	- C=0
XIV R	-	н	Υ	= C=NOH
XV: R		н	Υ	= CH,
XVI: R	=	н	Y	– СНОН
XVII: R	-	н	Υ	= O

Mislow et al.,⁸ among others, and discussed by Jaffé and Orchin² and Suzuki¹¹ for the conjugation band of less highly substituted biphenyls. Thus, for those compounds I-VIII which have bulky groups in the 2- and 2'-positions, the values of θ are greater than that for the parent compound XI and this is reflected in the shorter wavelengths and lower intensities of the absorption bands.[•]

Formation of the 7-membered ring bridge (compounds XII-XVII) forces the aromatic rings into a more nearly coplanar situation and the decrease in θ results in higher intensities of absorption at slightly higher wavelength. Expansion of the 7membered ring system to an 8-membered ring in the amide XVIII allows greater flexibility in the system and thus a higher value for θ ; the absorption band shifts to shorter wavelength with lower intensity.

The conjugation bands in this series also show this relationship; expansion of the ring of XIV from 7 to 8 members in XVIII causes a decrease in the intensity and the wavelength.

The non-bridged, 2,2'-disubstituted compounds (I-X) do not show bands in the 260-275 mµ region, the high angle of torsion preventing effective conjugation. Interestingly, the spectrum of the ketone XIII also does not appear to have a conjugation band, despite the fact that the position and intensity of the long-wavelength absorption are similar to those of the other bridged compounds, indicating comparable values of θ . Mislow *et al.*⁸ have noted that, for another series of bridged biphenyls, the presence of a ketonic CO in the 6-position is associated with a small shift (5-10 mµ) to longer wavelength of the conjugation band, and this is attributed to interaction between the benzene and CO π -systems in the electronically excited state. This was confirmed by observation of strengthened $n-\pi^{\circ}$ transitions at longer wavelength. It may be that a similar effect is operating in the present example and that the conjugation band has been modified to such an extent that it is not clearly visible, being masked by the intense long-wavelength absorption. It is unlikely that we would observe in this system the strengthened $n-\pi^{\circ}$ transitions which might accompany this effect.

NMR spectra. Table 2 shows the NMR data for some bridged biphenyls. On the whole the spectra agree well with those reported by Mislow et al.⁸ and Sutherland

• The extinction coefficients reported by Matarasso-Tchiroukhine (Ref. 13) for compounds IX and X appear to be a little higher than might be expected on comparison with the figures quoted here for similar compounds, although the values for λ_{max} are in fair agreement with ours.

	Other					80 [1] (s)	!	
Chemical shift at 35 (r-scale)	H8			I		ı	(included with methoxyl H)	
	Η٢	6-46 [1] (broad)	as SH	(syn : included with methoxyl H)	as SH	as SH	I	tegrated proton count
	6H	 	I		as SH	-63 [1] (t) - 13 c/s)	8-75 [1] (s)	orackets refer to in
	НS	685[2](\$)	6 62 [4] (s)	6-72 [2] (s) (anti)	7:5-80 [6] (m)	7.49 [4] (0). 5 ABX ($J_{AB} = -$	6-80 [2] (d)	et. Figures in square h
	Methoxyl H	6-10 [12] (d) 6-31 [3] (s) (ester)	6 16 [6] (s) 6 20 [6] (s)	6·14 [14] (s)	6-20 [12] (s)	6·17 [12] (s)	6 20 [14] (s)	- multiplet, o = oct
	Aromatic H	30 33 [4] (m)	3-13 [2] (s) 3-41 [2] (s)	3-20 [2] (s) 3-36 [2] (s)	3-30 [2] (s) 3-43 [2] (s)	3 24 [2] (s) 3 38 [2] (s)	3-33 [2] (s) 3-40 [2] (s)	doublet, t = triplet, m
	Compound	IIX	XIII	VIX	×	IVX	IIIXX	s = Singlet d =

5

TABLE 2. NMR SPECTRA OF BRIDGED BIPHENYLS IN DEUTFROCHLOROFORM (Themical shift at 35' (r-scale) and Ramsey.¹⁰ At the temperature used, only the alcohol XVI shows clearly the non-equivalence of the benzylic protons which is to be expected in a rigid system where conformational inversion is slow. An ABX system is observed with $J_{AB} = 13$ c/s. A range of $11-15\cdot2$ c/s is quoted in Ref. 8.

EXPERIMENTAL

UV spectra were recorded on a Cary 14 Recording Spectrophotometer and on a Unicam SP800 Spectrophotometer. IR spectra were obtained with a Perkin-Elmer Model 337 instrument and NMR spectra were recorded using a Varian A-60 spectrometer operating at 60 mc/s.

2,2'-Bis-β-chloroethyl-4,4',5,5'-tetramethoxybiphenyl (V). A soln of SOCI₂ (0.35 ml) in benzene (10 ml) was added to a soln of IV (374 mg) in benzene (50 ml). Pyridine (0.40 ml) was added and the mixture was heated under reflux (1 hr) and then poured into ice-conc HCL. This mixture yielded to benzene the dichloride V (373 mg) which was crystallized from benzene pet. ether, m.p. 144 145'. (Found: C, 60.5; H, 5.9; Cl, 17.8. $C_{20}H_{24}Cl_2O_4$ requires: C, 60.2; H, 60; Cl, 17.8%).

The dibenzoyl derivatives (VII) of IV crystallized from EtOH as rhombs., m.p. 105-106°, v_{max} (CH₂Cl₂) 1725 cm⁻¹ (ester CO). (Found : C, 71-6; H, 5-9. C₃₄H₃₄O₈ requires : C, 71-6; H, 6-0%).

Dieckmann cyclization. Finely-chopped Na (4.3 g) was added to a soln of II (10 g) in benzene, followed by MeOH (1 ml). The mixture was heated under reflux (12 hr) and when unreacted Na had been destroyed with MeOH, was poured into ice-water (450 ml). The mixture was acidified (HCl) and extracted with CHCl₃ The extract was washed, dried and evaporated leaving a yellow solid (9.15 g) which was crystallized from MeOH-CHCl₃ to give 7-methoxycarbonyl-4',4'',5'',5''-tetramethoxy-1,2,3,4-dibenzocyclohepta-1,3diene-6-one (XII), m.p. 202 205'', v_{max} (CH₂Cl₂) 1745 (ester CO) and 1725 cm⁻¹ (7-ring ketone). (Found: C. 650; H. 60 C₂₁H₂₂O₇ requires: C, 65.3, H, 5.7°_o)

4',4",5',5" Tetramethoxy-1,2,3,4-dibenzocyclohepta-1,3-diene-6-one (XIII) The β -ketoester XII (3-05 g) was heated under reflux with n-BuOH (250 ml) and conc HCl (190 ml) for 5 hr. The solvents were removed under reduced press, and the solid residue was boiled with MeOH. The ketone XIII (1-62 g) remained undissolved and was crystallized from EtOH dioxan, m.p. 252-256", v_{max} (CH₂Cl₂) 1720 cm⁻¹ (7-ring ketone) (Found C. 69.5; H. 5.9 Calc for C_{1.0}H₂₀O₅; C. 69.5; H. 6.1°₀) Matarasso-Tchiroukhine^{1.3} reports m.p. 259.

The oxime XIV crystallized from EtOH as needles, m.p. 186–187.5°, ν_{max} (CH₂Cl₂) 3595 cm⁻¹ (O --H). (Found: C, 66.7; H, 6.4; N, 4.3. Calc. for C₁₉H₂₁NO₃: C, 66.5; H, 6.2; N, 4.1°_o). Matarasso-Tchiroukhine¹³ reports m.p. 189.

Beckmann rearrangement. The oxime XIV (10 g) in benzene (40 ml) was shaken with PCl₅ (1.49 g) for 1 hr. Water was added, and the mixture yielded to CHCl₃ an oil (105 g) which was chromatographed in benzene on alumina (Brockmann activity V; 20 g). Elution with benzene gave 2-chloromethyl-2'-cyanomethyl-4,4',5,5'-tetramethoxybiphenyl VIII (489 mg), which was crystallized from heptane benzene, m.p. 159-160', v_{max} (CH₂Cl₂) 2255 cm⁻¹ (nitrile). (Found: C, 62.8; H, 5-5; Cl, 9-8; N, 40. C₁₉H₂₀ClNO₄ requires: C, 63·1; H, 5·4; Cl, 9·8; N, 3·9 %). Elution with CHCl₃-benzene (4:6 v/v) gave 4' 4",5',5''-tetramethoxy-1,2,3,4-dibenzo-6-azacycloocta-1,3-diene-7-one XVIII (120 mg) which was crystallized from benzene, m.p. 110-112', v_{max} (CH₂Cl₂) 3425 (N – H) and 1680 cm⁻¹ (8-ring amide). (Found: C, 66·4; H, 6·0; N, 4·2. C₁₉H₂₁NO₅ requires: C, 66·5; H, 6·2; N, 4·1%).

Wolff Kishner (Huang-Minlon) reduction. The ketone XIII (400 mg) was added to a soln of KOH (2:24 g) and N_2H_4 ·H₂O (40 ml) in diethylene glycol (10 ml) at 150°. After 90 min at this temp, the soln was cooled and poured into water (50 ml). After 16 hr at room temp a solid separated (201 mg) which was crystallized from heptane-benzene to give 4'.4",5',5''-tetramethoxy-1,2,3,4-dibenzo-cyclohepta-1,3-diene (XV), m.p. 153'5 155°. (Found C, 72'4; H, 6'7. C₁₉H₂₂O₄ requires. C, 72:6, H, 7:05°₀).

Reduction with lithium aluminium hydride. The ketone XIII (530 mg) in THF (40 ml) was heated under reflux with LAH (218 mg) for 16 hr. When unreacted LAH had been destroyed with EtOAc, dilute H_2SO_4 was added, and the mixture was extracted with CHCl₃, yielding 4',4'',5',5''-*tetramethoxy*-1,2,3,4-*dibenzo*cyclohepta-1,3-diene-6-ol XVI (516 mg) which crystallized from EtOH, m.p. 181-5, 183-5', v_{max} (CH₂Cl₂) 3615 cm⁻¹ (O · H). (Found · C, 69-3; H, 6-8. C₁₉H₂₂O₄ requires: C, 69-1; H, 6-7%)

Acknowledgement—We wish to thank Professor M. Stacey, C.B.E., F.R.S., for his interest, and the S.R.C. for a grant (to C.J.G.).

REFERENCES

- ¹ G. H. Beaven, Steric Effects in Conjugated Systems, (Edited by G. W. Gray, p. 22. Butterworths, London (1958).
- ² H. H. Jaffé and M. Orchin, Theory and Applications of Ultraviolet Spectroscopy, pp. 397-407. Wiley, New York (1962).
- ³ G. H. Beaven, M. L. Bird, D. M. Hall, E. A. Johnson, J. E. Ladbury, M. S. Lesslie, and E. E. Turner, J. Chem. Soc. 2708 (1955).
- ⁴ G. H. Beaven, D. M. Hall, M. S. Lesslie, and E. E. Turner, Ibid. 854 (1952).
- ⁵ G. H. Beaven, D. M. Hall, M. S. Lesslie, E. E. Turner and M. L. Bird, Ibid. 131 (1954).
- ⁴ E. A. Braude and W. F. Forbes, Ibid. 3776 (1955).
- ⁷ G. H. Beaven, and E. A. Johnson, Ibid. 651 (1957).
- ⁸ K. Mislow, M. A. W. Glass, H. B. Hopps, E. Simon and G. H. Wahl, Jr., J. Am. Chem. Soc. 86, 1710 (1964).
- * A. Moscowitz, K. Mislow, M. A. W. Glass and C. Djerassi, Ibid. 84, 1945 (1962).
- ¹⁰ I. O. Sutherland and M. V. J. Ramsey, Tetrahedron 21, 3401 (1965).
- ¹¹ H. Suzuki, Bull. Chem. Soc. Japan 32, 1340, 1350, 1357 (1959); 35, 1715 (1962).
- 12 R. I. T. Cromartie, J. Harley-Mason and D. G. P. Wannigama, J. Chem. Soc. 1983 (1958).
- ¹³ E. Matarasso-Tchiroukhine, Ann. de Chim. 13 Ser. 3, 405 (1958).